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ABSTRACT

Linde has recently argued that compact flat or negatively curved spatial sections should,
in many circumstances, be considered typical in Inflationary cosmologies. We suggest that

the “large brane instability” of Seiberg and Witten eliminates the negative candidates in
the context of string theory. That leaves the flat, compact, three-dimensional manifolds

— Conway’s platycosms. We show that deep theorems of Schoen, Yau, Gromov and

Lawson imply that, even in this case, Seiberg-Witten instability can be avoided only with
difficulty. Using a specific cosmological model of the Maldacena-Maoz type, we explain

how to do this, and we also show how the list of platycosmic candidates can be reduced
to three. This leads to an extension of the basic idea: the conformal compactification of

the entire Euclidean spacetime also has the topology of a flat, compact, four-dimensional
space.



1. Nearly Flat or Really Flat?

Linde has recently argued [1] that, at least in some circumstances, we should regard
cosmological models with flat or negatively curved compact spatial sections as the norm

from an Inflationary point of view. Here we wish to argue that cosmic holography, in the
novel form proposed by Maldacena and Maoz [2], gives a deep new interpretation of this

idea, and also sharpens it very considerably to exclude the negative case. This focuses
our attention on cosmological models with flat, compact spatial sections.

Current observations [3] show that the spatial sections of our Universe [as defined by
observers for whom local isotropy obtains] are fairly close to being flat: the total density

parameter Ω satisfies Ω = 1.02 ± 0.02 at 95% confidence level, if we allow the imposition
of a reasonable prior [4] on the Hubble parameter. [See however [5] for a cautionary note.]

The present era of “precision cosmology” [6] is based on the assumption that the true

value of Ω is even closer to unity than the observations demand — see for example [7].
Applications of precision cosmology depend on this “almost exactly flat” assumption in

a crucial way: for example, Wang and Tegmark [8] stress that without this assumption
essentially nothing can be said about the evolution of the dark energy density. Turning to

the theoretical situation, we find that the leading theory, Inflation [9][10], also demands
values of Ω which are extremely close, though not exactly equal, to unity. Most versions

require unity plus or minus some small number [typically [9] about 10−4].
Of course, Inflation itself explains why the Universe currently appears to be flat: any

local evidence of curvature is “inflated away”. But here we wish to propose that this
process merely restores the local spatial geometry to its initial and most natural global

state, namely that of a perfectly flat, compact three-dimensional manifold. That is, we
suggest that the fundamental value of Ω is exactly, not nearly, unity; this is proposed as

an exact initial condition for stringy cosmology.
The reader is entitled to ask whether the distinction between approximate and exact

initial flatness really has any content. For it is clear that ordinary, flat IR3 can be given

a constant negative curvature of any magnitude, however small, since hyperbolic space
H3 has this same IR3 topology. Similarly, IR3 can be consistently deformed so that it has

positive Ricci curvature everywhere.1 Thus flat IR3 can be deformed in a way which leads
to either positive or negative Ricci curvature, of any magnitude, at every point, and so

it is hard to see how there can be a difference between extremely small curvature and
exactly zero curvature.

This, however, is where the assumption of compactness is crucial. For the topology
of an exactly flat compact manifold is radically different from that of either a positively

or a negatively curved space, whether compact or not. A consequence of this is that it is
impossible to deform a compact flat manifold in such a way that its sectional curvature

is everywhere negative; on the other hand, it is also impossible to deform it so that even
the scalar curvature becomes positive everywhere. [See [12] and page 306 of [13].] Of

course, such a space can be locally deformed [by the presence of a galaxy, say] but not
in a way leading consistently to curvature of a definite sign. If the Universe had spatial

1Examples of this can be constructed, but of course in this case the Ricci curvature cannot be constant,
that is, the metric cannot be Einstein, if the metric is complete. In fact [11], IR

3 is the only non-compact
three-dimensional manifold which can accept a complete metric of positive Ricci curvature.
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sections of this kind, and if the matter content were smoothed out, then the geometry
would have to be exactly flat, as a result of these extremely deep geometric theorems.

Thus, the hypothesis of exact underlying flatness does make sense if the spatial sections
are compact.

The suggestion that the spatial topology of our Universe is not trivial is of course an
old one [14]. Some current interest in this idea focuses on the relation to the AdS/CFT

correspondence [15][16][17][18][19]. Inflation explains why we probably cannot see [20]
direct evidence of such non-triviality: the fundamental domain is inflated to a size larger

than the current cosmological horizon. Nevertheless, the idea that the spatial sections
may be compact continues to attract attention, from many different points of view. In the

specific case of flat, compact sections, discussions include simple models of components of
dark energy [21][22] and string/brane gas cosmology [23][24][25][26][27][28]; in particular it

is interesting that, whether or not string/brane gas cosmology succeeds in explaining the
dimensionality of observed space, the Brandenberger-Vafa scenario, with its toral model

of all spatial directions, is still widely regarded as a natural initial condition for string
cosmology.

Most relevantly for our work here, it has long been known [29][30] that flat or negatively

curved compact spatial sections arise very naturally in quantum cosmology. More recently,
Linde [31] has emphasised that such constructions are also natural from the Inflationary

point of view; and, more recently still, as we mentioned earlier, he has strengthened this
to the claim that compact but not positively curved spatial sections should be considered

to be typical in Inflationary quantum gravity rather than exotic [1]. Linde stresses that
there is no conflict, in Inflationary theory, between the assumption of compactness and the

Inflationary prediction that the effects of compactness should not be directly observable.
In fact, the compactness of the spatial sections may play a vital role in ensuring sufficient

initial homogeneity for Inflation to begin. In this connection, it has recently been argued
[32] that Inflation requires us to take a global viewpoint and not to ignore the structure

beyond the horizon.
It is the objective of this work to argue that the hypothesis of exact spatial flatness,

but not negative curvature, is natural from the holographic point of view.
The form of cosmic holography in which we are interested here, due to Maldacena

and Maoz [2] is one which adapts the basic ideas of the AdS/CFT correspondence to

the cosmological case. As in AdS/CFT, the starting point is anti-de Sitter spacetime,
but now transformed into a cosmological spacetime by the introduction of some kind of

matter [33][34][35][36]. The resulting cosmology has both a Bang and a Crunch, but its
Euclidean version is entirely non-singular and has a well-behaved conformal infinity, on

which the dual field theory is to be defined. Each connected component of this conformal
infinity has precisely the same topology as the spatial sections of the Lorentzian version

of the spacetime.2

If there is a holographic AdS/CFT-style duality here, it follows that the cosmological

model is controlled by a field theory which does not “care” how large the spatial sections
may be at any particular time, such as the present. Whatever their size, the field theory is

2This picture is actually consistent with the hypothesis that the spatial sections are compact, for in
the generalized Euclidean AdS/CFT correspondence it is usually desirable for the CFT to be defined on
a compact space; see Section 2.3 of [37].
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still sensitive to their structure, including their topological structure. [For concrete exam-
ples of the profound ways in which non-trivial topology can affect the behaviour of field

theories, see [38][39].] In short, cosmic holography allows us to probe the global form of
the spatial sections, whether or not3 the fundamental domain is far larger than the current

horizon: it is capable of this because an AdS/CFT type of duality is a correspondence
between the entire bulk and its infinity.

As an application of these ideas, we shall try to constrain the structure of the spatial
sections. We do this with the aid of the “large brane instability” discussed by Seiberg

and Witten [43]. We shall see that holography rules out negative curvature for compact

cosmological spatial sections, no matter how small the curvature may be in magnitude;

in fact, it is possible to make this argument even if the well-known “BKL” behaviour
[describing the growth of anisotropies during the approach to cosmological singularities]

is taken into account. We shall also see that holography does allow flat, compact spatial
sections, but only if specific conditions are satisfied close to the singularities.

If the spatial sections of our world are flat and compact, then it is potentially important
to determine which of the ten possible topologies [44] has been selected — and why. We

shall not completely succeed in fixing the topology, but the list of candidates will be

greatly reduced, from ten to three. One of the three survivors is the Hantzsche-Wendt
space or “didicosm” [45][46], the most complex of the ten.

We begin with a very brief introduction to a class of cosmological models [33][35]
which generalize those proposed by Maldacena and Maoz by allowing for a period of ac-

celeration, in accord with current observations [47]. Throughout this discussion, we shall
for simplicity ignore all forms of matter other than the quintessence field; this includes

the inflaton, though we stress that ultimately [as explained in [1]] we rely on Inflation to
ensure detailed agreement with current observations. We then explain how these models

are compatible with cosmic holography, laying particular stress on the stringent condi-
tions imposed by the Seiberg-Witten instability [43]. Next, we argue that a holographic

one-to-one bulk/infinity correspondence can be maintained only by extending our basic
hypothesis to the entire spacetime: that is, we propose that the compactification of the

[Euclidean] version is globally conformal to a four-dimensional flat compact manifold.
We will see that this imposes conditions which only a few candidate topologies [for the

three-dimensional sections] are able to meet. Because we are concerned with the topology

[and not with the precise geometry] of these spaces, it is reasonable to hope that our
conclusions are valid even though our concrete cosmological model is too simple to be

realistic.
Throughout this work we follow Maldacena and Maoz [2] in assuming that the back-

ground geometry, prior to the introduction of some kind of matter, is that of anti -de Sitter
spacetime, AdS4. [See [48][49][50][51][52] for relevant work on AdS-based cosmology.] Of

course, many efforts have been made to develop cosmic holography on a de Sitter-like
background; see [53] for a very clear analysis of the current state of such attempts. Con-

straints on cosmic topology can also be developed in that context: see [15][16][17].

3All current data are compatible with Inflationary expectations regarding spatial curvature and topol-
ogy, but this is not to say that alternatives [see for example [40][41][42]] have been completely ruled out.
For the sake of clarity, however, we shall assume here that they have been.
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2. Flatness, Acceleration, and Breitenlohner-Freedman

For our subsequent discussions it will be very helpful to have a concrete model of the
various physical mechanisms to be considered. In this section, we introduce an extremely

simple cosmological model which can play this role. No claim is made that this model
itself is realistic, though possibly it could be made so by superimposing matter, radiation,

inflaton and other fields on the simple spacetime to be defined below.
The basic cosmological model we shall consider is one with a Bang and a Crunch.

There are in fact very general arguments [54] which suggest that the ultimate state of our
Universe will be a Crunch of the kind that arises naturally when potentials are allowed

to be negative [55]. If our Universe is now anti-de Sitter-like — something that is not
excluded by observations, since such spacetimes can accelerate, though only temporarily

[33] — then this is a straighforward consequence of having a negative cosmological con-

stant in the background. But even if the present state of the Universe is de Sitter-like,
this probably corresponds to a metastable state which eventually fluctuates or tunnels to

an anti -de Sitter-like basin of attraction of some potential. [The alternative is decom-
pactification, but this possibility only arises if one has some argument which rules out

negative potentials.]
Maldacena and Maoz [2] analyse Bang/Crunch spacetimes with metrics of the form

g−MM = − (dt−)2 + a−(t−)2 g+(Σ), (1)

where t− is proper time, a−(t−) is the scale factor [which vanishes at both ends of some
finite interval], and g+(Σ) is a metric on a time-independent three-dimensional Rieman-

nian manifold Σ which acts as a model for the spatial sections. [Throughout this work,
we use a + superscript to indicate a Euclidean coordinate or field, a negative sign for its

Lorentzian counterpart.] Note that such metrics do not take into account the evolution
of anisotropies, which we shall consider, in specific cases, in later sections of this work.

One way of obtaining spacetimes of this kind is to introduce matter into anti-de Sitter
spacetime, allowing it to act on the geometry in accord with Einstein’s equation. The

result is typically a Bang/Crunch spacetime. Maldacena and Maoz observe that the
Euclidean version will in general be non-singular and asymptotically hyperbolic [that

is, asymptotically like Euclidean AdS]. It will therefore have a well-defined conformal
boundary. The hope is that, in some way that is not yet fully understood, the non-

singular Euclidean boundary “replaces” the singularities of the Lorentzian version. A field
theory on the boundary should give a holographic description of the bulk in the familiar

way.4 Notice that, by contrast, de Sitter spacetime does not have a holographic Euclidean

version, since the usual Euclidean version of dS4, the four-sphere, has no boundary. In
this sense, Euclidean holography favours AdS4 over dS4 as the fundamental “background”

for cosmology.
Maldacena and Maoz also observe that the Euclidean versions of their Bang/Crunch

cosmologies are topologically non-trivial: they refer to such spaces as Euclidean “worm-
holes”. For this reason they use particular matter configurations such as Yang-Mills

4This is the sense in which we shall understand “holography”. Note that other interpretations, in-
volving entropy bounds, may not be consistent with Maldacena-Maoz cosmologies: see in particular
[48].
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merons and instantons to construct their cosmological models. Unfortunately, such mat-
ter cannot lead to cosmic acceleration. On the other hand, ordinary scalar matter, in the

guise of “quintessence”, can easily lead to acceleration, but it cannot generate a topologi-
cally non-trivial Euclidean “spacetime” [56][57]. We are thus led, as in [58], to consider a

Euclidean axion as the matter content of the Euclidean version of the spacetime; for ax-
ions appear to be unique in leading both to acceleration and to topological non-triviality.

Other forms of matter and radiation, as well as the inflaton, have well-known effects on
the expansion history, so for simplicity we shall not consider them here.

Motivated by the discussion of quintessence superpotentials in [59], in [35] we proposed
to develop a Euclidean axion cosmology by postulating a superpotential. Since the po-

tential should be periodic for an axion, the same applies to the superpotential; and since
the axion field ϕ+ is a pseudo-scalar, it is natural to restrict attention to superpotentials

which are odd in ϕ+. Thus we consider superpotentials of the form

W+(ϕ+) =
∞
∑

k=1

Ck sin(k

√

4π

̟
ϕ+), (2)

where ̟ is a positive constant. If we take only one term for simplicity, we can assume it to

be the first; requiring the potential to yield the usual negative cosmological constant for
pure Euclidean AdS4, with all sectional curvatures equal to −1/L2, when (W+)′ vanishes,

we can fix the constant C, and so we obtain

W+(ϕ+) =
1

16πL
sin(

√

4π

̟
ϕ+). (3)

Higher-order terms in the original expansion (2), which we shall consider later, are ob-

tained by replacing ̟ by ̟/k2.
The potential corresponding to W+ may be written as

V+(ϕ+) = − 3

8πL2 + V+

Axion, (4)

where

V+

Axion =
3 − ̟−1

8πL2 cos2(

√

4π

̟
ϕ+). (5)

Thus we are effectively considering Euclidean AdS4, with “energy” density −3/(8πL2),

into which we have introduced a matter field with a potential V+

Axion.

In accordance with our hypothesis that the spatial sections of our cosmological model
are to be flat and compact, we recall [44] that every compact flat three-manifold can be

expressed as T3/F, where T3 is the three-torus and F is a small finite group [which is in
fact isomorphic to the holonomy group of the manifold]. Locally, therefore, we can use

the usual angular coordinates on a three-torus [taken to be cubic for convenience], and
the Euclidean metric will have the general form

g+ = (dt+)2 + A2 a+(t+)2[dθ2
1 + dθ2

2 + dθ2
3], (6)

where A measures the circumferences of the torus when a+(t+), the Euclidean scale factor
[which we can abbreviate to a+], is equal to unity.
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The solution for a+ in the present case, obtained by solving [33] the Einstein equations
with the potential (5) [and a canonical kinetic term] superimposed on Euclidean AdS4,

yields the metric

g+(̟,A) = (dt+)2 + A2 cosh2̟(
t+

̟L
) [dθ2

1 + dθ2
2 + dθ2

3]. (7)

This is entirely non-singular. If we embed this space as the interior of a manifold-with-

boundary, then the boundary has two connected components at t+ = ±∞. However, it was
argued in [35] that holography dictates that these two components should be topologically

identified, and that is what we propose to investigate below.
The Lorentzian version of all this is significantly different: we now have a Bang/Crunch

spacetime with metric

g−(̟,A) = − (dt−)2 + A2 cos2̟(
t−

̟L
) [dθ2

1 + dθ2
2 + dθ2

3]. (8)

Contrary to what is often said, such cosmologies can be perfectly compatible with current

observations, a point stressed recently by Wang et al [60]. Notice that this metric allows
for a period of accelerated expansion provided that ̟ is not too small; in fact there is

such an interval if ̟ > 1. The Lorentzian version of ϕ+, denoted ϕ−, is a quintessence
field [61][62][63] with an exponential-like potential given by

V−

Quintessence =
3 − ̟−1

8πL2 cosh2(

√

4π

̟
ϕ−); (9)

this is superimposed on an AdS4 geometry with cosmological constant −3/L2. The energy

density of ϕ− can be computed in terms of the Lorentzian scale function a−(t−) [which
we abbreviate to a−]; the result [33] is

ρ (ϕ−) =
3

8πL2 (a−)−2/̟. (10)

The total energy density is the sum of this and the energy density of the background

AdS4. If we had taken the k-th order term in (2) instead of the first, then the density of
ϕ− would vary as (a−)−2 k2/̟; so the k = 1 term dominates when the Universe is large,

while the higher order terms in the Fourier expansion are important very near to the Bang
and the Crunch.

Clearly the Lorentzian metric g−(̟,A) given by (8) is not asymptotically AdS. Never-
theless its Euclidean version, given by (7), is asymptotically hyperbolic, that is, asymptot-

ically similar to Euclidean AdS. Since the Maldacena-Maoz formulation of cosmic hologra-

phy is based on an interplay between the Euclidean and Lorentzian versions, any constraint
on the parameters which we can derive from this fact must be accepted as physically rel-

evant. A fundamental example of such a constraint is the Breitenlohner-Freedman bound
[64], which, as explained in [37], is also valid in the Euclidean case. [Notice that the

Euclidean space is compactified only in some directions: its volume is infinite towards
either component of the boundary. The discussion in [37] applies here.] The BF bound

imposes a very interesting condition on ̟, as we now explain.
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The field ϕ+ does not decay to zero towards either t+ = ∞ or −∞, but rather to

±π
2

√

̟/4π, respectively: this can be seen from the explicit solution for it,

ϕ+ = ±
√

̟

4π
cos−1(sech(

t+

̟L
)). (11)

This behaviour is necessary in order to ensure that the total energy density should tend
to the AdS4 value −3/8πL2 near infinity [see equation (5)]. Concentrating on the t →
+∞ end of the manifold, we therefore find it convenient to define a new field ψ+ by

ψ+ =
π

2

√

̟/4π − ϕ+. (12)

Substituting this into equation (5) we see that the mass of ψ+ is given by

m2 =
3 − ̟−1

̟L2 . (13)

In general one can expect an AdS/CFT-style correspondence to break down [65] if the
Breitenlohner-Freedman bound fails; since we are of course ultimately interested in estab-

lishing a correspondence of this kind for cosmology, we must ensure that the BF bound

is satisfied here. In four dimensions this bound is m2 ≥ (3/4)Λ, where Λ is the negative
cosmological constant of an AdS background. That is, m2 can be negative without causing

any instability, as long as it is not too negative. Here this bound becomes

3 − ̟−1

̟L2 ≥ − 9

4L2
, (14)

whence we have for positive ̟

̟ ≥ 2

1 +
√

2
× 1

3
. (15)

Thus the parameter ̟ is allowed to go below the value 1/3, which means that V+
Axion

[equation (5)] is allowed to be negative. However, the lowest value of ̟ allowed by (15)

is not very far below 1/3; it is in fact equal to about 82.8% of 1/3.
In fact, cosmological data [35] require the basic value of ̟ to be quite large; in

particular, there is a period of cosmic acceleration, as observed, if and only if ̟ is greater
than unity. However, our discussion here is based on the assumption that we take only the

first term in the expansion (2). If we drop this assumption, then (15) can be interpreted
as requiring us to truncate the expansion in such a way that if k labels the final term,

then not just ̟ but also ̟/k2 satisfies the inequality. In view of the discussion around
equation (10), this last term will be the dominant one near to the Bang and the Crunch

in the Lorentzian version of the spacetime.

Combining all these results, we conclude that our Euclidean axion is governed by a
superpotential given by a finite sum in equation (2). We can ignore all terms in the sum

apart from the first [which dominates when the Universe is large] and the last [which
dominates near to the Bang and the Crunch]. The quintessence density will grow very

rapidly near to the Bang/Crunch: it can in fact grow [as a− tends to zero] more rapidly
than (a−)− 6. However, evaluating the right side of (15), we find that the maximum rate

8



at which the density can tend to zero is as [approximately] (a−)− 7.2426. This “window”
between the number 6 and a value just over 7.2 will be considered in detail below.

Having introduced a concrete example of a holographic cosmology, we can turn to the
question of how holography influences the structure of the spatial sections of spacetimes

of this general kind.

3. Flatness, Holography and Seiberg-Witten Instability

Linde [1] argues that compact spatial sections are favoured by Inflationary theory. There

are in fact several strong advantages in compact sections: for example, because compact
sections are [under some circumstances] circumnavigable, it is easy and natural in such

cosmologies to arrange for sufficient homogenization for Inflation to begin. On the other

hand, positive curvature is generically disfavoured in quantum-gravitational studies of
initial conditions for Inflation [30]. Thus Inflationary quantum gravity firmly directs our

attention towards either flat or negatively curved compact spatial sections. There is of
course an enormous number of such manifolds, but we shall now see that this number is

drastically reduced when we study Bang/Crunch cosmologies from the AdS/CFT point
of view.

In [43], Seiberg and Witten have studied the extension of the AdS/CFT correspon-
dence to general geometries of the AdS type: that is, they considered the consequences

of doing string theory on non-compact Euclidean spaces, with negative Ricci curvature,
admitting a conformal compactification in the sense of Penrose. One of their more re-

markable findings was that BPS branes “near” to the conformal boundary [“large branes”]
will give rise to an instability if the conformal structure at infinity is represented by a

metric of negative scalar curvature. [When discussing compact conformal manifolds, we
can, without loss of generality, assume that the scalar curvature is a constant of arbitrary

magnitude but of a fixed sign [66].] The unexpected role of the scalar curvature is a strong

hint that this instability is “holographic”, for one knows that the scalar curvature is an
essential component of the conformally invariant Laplace operator,

∆CONFORMAL = ∆ +
n − 2

4(n − 1)
R, (16)

defined by the conformal structure at [n-dimensional] infinity. [It is important to note
that everything we say here is based on the assumption that n is greater than 2. The case

of two-dimensional boundaries is special and will not be considered here.] Indeed, Seiberg
and Witten were able to show that negative scalar curvature does induce the instability

in the field theory at infinity that holography demands given the large brane instability

in the bulk. Seiberg-Witten instability has been subjected to a deep study recently in
[67] and [68]; it represents a fundamental constraint on possible boundary geometries and

topologies in any generalized version of the AdS/CFT correspondence. For it is clear
that it would not be consistent to ignore the effects of such unstable processes on the

underlying geometry, and these effects could be drastic.
This comment applies with particular force in the context of Maldacena-Maoz hologra-

phy [2]. For here the idea is that, however singular the Lorentzian cosmology may be, its
Euclidean version should be sufficiently well-behaved that there are asymptotically AdS
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regions which are not, for example, cut off by some kind of disturbance resulting from
the unrestrained growth of large branes in those regions. Thus Seiberg-Witten instability

must be avoided in cosmic holography.
The relevance of all this arises from the following simple observation: the spatial

sections of the particular spacetimes considered in the previous section, and by Maldacena
and Maoz, have the same conformal geometry as the space on which the dual theory is

defined; for example, it is clear that if the manifold with metric given by equation (7)
is embedded as the interior of a manifold-with-boundary, then each component of the

boundary has the structure of the flat space T3/F, with its “flat” conformal structure. An
analogous statement would hold if we considered a similar spacetime but with negatively

curved spatial sections. If the Maldacena-Maoz cosmologies are a correct implementation
of string theory in cosmology, it therefore follows that string theory predicts that the

spatial sections of our Universe cannot be negatively curved ; indeed, they cannot even
have negative scalar curvature. However, this argument ignores perturbations. We will

deal with these after introducing some mathematical machinery.
The first result we need is the Kazdan-Warner classification [69] — see [70] for a recent

discussion — of all compact manifolds of dimension at least three. This is concerned

with the following question: given such a manifold and any smooth function S on it,
does there exist a metric on that manifold having S as its scalar curvature? This is

ultimately a question about the “deformability” of the manifold.5 For example, can a
sphere [of dimension greater than two] be deformed to such an extent that its scalar

curvature becomes negative everywhere? Such questions are answered by the Kazdan-
Warner classification theorem:

THEOREM [Kazdan-Warner]: All compact manifolds of dimension at least three fall into

precisely one of the following three classes:

[P] On these manifolds, every smooth function is the scalar curvature of some Riemannian

metric.

[Z] On these manifolds, a smooth function can be a scalar curvature of some Riemannian

metric if and only if it either takes a negative value somewhere, or is identically zero.

[N] On these manifolds, a smooth function can be a scalar curvature of some Riemannian

metric if and only if it takes a negative value somewhere.

For example, spheres are evidently not in [Z] or [N], so they must be in [P]. [It follows
that a sphere of dimension at least three can be deformed in such a way that its scalar

curvature is negative everywhere — see [68] for an explicit construction.] It can be shown
[using some deep theorems to be discussed below] that compact manifolds of negative

sectional curvature are in [N]. This means that every conformal structure on such a
manifold is represented by a metric of constant negative scalar curvature: no matter how

we deform it, its scalar curvature can never vanish or become positive everywhere. Thus,
the Seiberg-Witten instability in this case is particularly radical, since it is independent of

the choice of metric and must arise from the topology of the space — the Kazdan-Warner

5It is interesting that Lorentzian compact manifolds are probably [70] arbitrarily “deformable” in this
sense.
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classification depends only on the [differential]6 topology of the manifold. One says that
the instability is induced topologically [71].

This topological aspect of Seiberg-Witten instability has a direct physical consequence,
as follows. The classical Belinsky-Khalatnikov-Lifschitz analysis of the approach to cos-

mological singularities [see [72] for a recent discussion] would lead one to expect that, as a
Bang or a Crunch is approached, the geometry of the spatial sections would become more

and more anisotropic, and this distortion might well become so extreme that the precise
nature of the conformal structure induced at Euclidean infinity would no longer be clear.

Now, however, we see that such anisotropies are irrelevant: no matter how complicated
they may be, the scalar curvature induced at Euclidean infinity can never be positive or

zero — no amount of distortion can avert Seiberg-Witten instability in this case. For
whatever happens to the conformal geometry during the evolution, the topology of the

spatial sections does not change, and the topology of conformal infinity remains that of a
space on which every metric defines a conformal structure with negative scalar curvature.

We conclude that holography totally forbids spatial sections of negative curvature, even if
perturbations are taken into account.

Notice that the theory forbids negative curvature of any magnitude, no matter how

small, because in any case it does not make sense to speak of “small” curvatures on the
boundary [which only has a conformal structure, not a Riemannian metric]. Thus there is

indeed a real distinction between extremely small negative curvature and zero curvature
on the bulk spatial sections [which do of course have a Riemannian structure]. This

distinction is a direct reflection of the holographic nature of Maldacena-Maoz cosmology.
To summarize, we have here a very strong prediction from cosmic holography: the

theory could not be saved if any value of Ω below unity were confirmed by observation.
It is interesting to note that, until the discovery of cosmic acceleration, the cosmological

data actually pointed strongly towards negative spatial curvature; so we have an example
in which cosmic holography makes a statement which might easily have been falsified.

Now let us turn to the case of principal interest to us: cosmological models with flat,
compact boundaries and spatial sections. Seiberg and Witten did not consider the case

where the scalar curvature of the boundary is zero. Here the analysis depends on higher-
order terms [68] in the expansion of the brane action, and unfortunately it is difficult to

give a general statement of the precise conditions needed to avert instability. However,

much can be learned regarding this case by studying ground states for AdS black holes
with flat, compact event horizons; for these spacetimes have flat conformal structures on

conformal infinity. The ground state for such black holes is not anti-de Sitter spacetime
but rather the “AdS instanton” with [Euclidean] metric [73] given in (n+1) dimensions

by

g+(AdSI) =
L2

r2
(1 − r0

n

rn
)−1 dr2 + (

r2

L2
) [(dt+)2 + (1 − r0

n

rn
) dx2 +

n−2
∑

1

(dxi)2]. (17)

Here x and xi are coordinates on the circumferences of circles of various radii; that is, they
6By this we mean that, in some examples of high-dimensional topological spaces which can admit more

than one differentiable structure, the KW class can change if the differentiable structure is changed, even
if the underlying topological structure does not change. But this cannot happen in the cases considered
in this work.
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are proportional to angles. In the Euclidean case, the “time” coordinate too is angular.
The conformal structure at infinity [r → ∞] is represented by the flat metric

g+(AdSI, ∞) = (dt+)2 + dx2 +
n−2
∑

1

(dxi)2, (18)

and this is a metric on a compact manifold, since all of the coordinates are angular.

Thus the structure at infinity for the AdS instanton is precisely a compact, flat, n-
dimensional manifold. The very fact that the instanton is a well-behaved, unique ground

state [74][75][76] for these black holes strongly suggests that vanishing scalar curvature
on the boundary is compatible with a stable field theory there, dual to one of these

physically well-defined bulk configurations. Thus, we do have a large class of examples in
which zero scalar curvature at the boundary is not pathological. While there undoubtedly

exist other examples in which it is, one expects that these examples must involve highly
intricate geometric constructions, not the very simple structures we are considering here.

For concreteness, and in order to avoid giving an analysis which is too model-dependent,
we shall assume that scalar-flat boundaries of Maldacena-Maoz cosmologies — which are

after all geometrically much simpler than AdS black holes with flat event horizons — do

not lead to large brane instabilities in the bulk. Under this assumption, the cosmological
model we considered above is of course stable in the Seiberg-Witten sense, since it is clear

that the conformal structure induced on both connected components of Euclidean infin-
ity is represented by a flat, hence scalar-flat, metric. As in the negatively curved case,

however, one has to consider whether perturbations can disturb this simple picture. For
a flat manifold can be deformed: a generic distortion produces a new conformal structure

not represented by a flat metric. To assess the consequences of this, we need some further
results in global differential geometry.

First, we need the concept of an enlargeable manifold [[13], page 302]. These are
n-dimensional manifolds M such that, given any positive ǫ, there exists an orientable

Riemannian covering M∗ and a map f [which is constant at infinity and of non-zero degree]
from M∗ to the Riemannian n-sphere of curvature unity, where f contracts all lengths by

a factor of at least ǫ. In other words, M must have “arbitrarily large” covering spaces.
Notice that enlargeability is a topological condition. Clearly all compact flat manifolds

are enlargeable.

The work of Schoen, Yau [12], Gromov, and Lawson [[13], page 306] can be summarized
as follows:

THEOREM [Schoen-Yau-Gromov-Lawson]: There is no metric of positive scalar curva-

ture on any compact enlargeable spin manifold.

It follows that compact enlargeable spin manifolds can never be in Kazdan-Warner

class [P]. Now tori are compact, enlargeable, and spin; hence, no matter how a torus is

deformed, the scalar curvature can never become positive everywhere, and it follows that
the same is true of any quotient of a torus. Since every flat compact manifold is a quotient

of a torus, we see that this statement is true of any compact flat manifold. On the other
hand, it is obvious that flat compact manifolds are not in Kazdan-Warner class [N]. It

follows that they are in [Z]. But this means that the only way to avoid a negative scalar
curvature metric on these spaces is to ensure that the scalar curvature is precisely zero
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everywhere. This appears to be a strong constraint. In fact, it is far stronger than it
seems. For Gromov and Lawson, extending a theorem of Bourguignon, were able to prove

[[13], page 308] the following result.

THEOREM [Bourguignon-Gromov-Lawson]: If a metric on a compact enlargeable spin

manifold has zero scalar curvature, then that metric must be exactly flat, that is, the

curvature tensor must vanish everywhere.

This is a remarkable result: the vanishing of a single scalar invariant, the scalar curva-
ture, forces the entire curvature tensor to vanish exactly on these manifolds. Recall now

Schoen’s theorem [66] to the effect that any conformal structure on a compact manifold is

represented by a metric with constant scalar curvature; recall also that a smooth function
on a manifold in KW class [Z] has to be negative somewhere if it is the scalar curvature

of some metric, unless it is exactly zero. Combining all these observations, we have the
following statement:

COROLLARY: Let g be a metric on a manifold with the topology of a compact flat man-

ifold. Then unless g itself is conformal to a flat metric, it is conformal to a metric of

constant negative scalar curvature.

That is, if such a manifold is a component of the conformal boundary of a manifold of the
kind considered by Seiberg and Witten, and if a flat metric on the boundary is distorted,

however slightly, so that it ceases to be conformally flat, then the system will become
unstable to the production of large branes. The situation here regarding Seiberg-Witten

instability is thus almost as severe as it is in the negatively curved case: the instability
can be avoided only if the boundary is perfectly [conformally] flat.

These deep geometric results thus impose an extremely demanding self-consistency
check on our proposal. For the conformal structure at Euclidean infinity is obtained by

taking a suitable limit of the metric on the spatial sections, after removing the conformal
factor. [See the following section for the details.] This means that, on the Lorentzian

side, we have to ensure that the spatial sections tend to become increasingly flat [again
after removing the conformal factor] as both the Bang and the Crunch are approached

in cosmologies like the one discussed in the previous section, with the Lorentzian metric
given by equation (8). That is of course trivial for this precise metric, but this simplicity

is based on the assumption that no other form of matter is present. If we introduce

small anisotropies corresponding to local concentrations of matter or radiation, it is far
from clear that the spatial sections will be so well-behaved near to the Bang and to the

Crunch. Indeed, the Belinsky-Khalatnikov-Lifschitz analysis mentioned above indicates
that under small perturbations a generic spacetime with ordinary matter sources can be

expected to develop severe anisotropies as one approaches a Bang or a Crunch, and so
one would not in general expect a more realistic version of (8) to induce flat metrics on

the spatial sections at very early or very late times; therefore it is far from clear that the
conformal structure at infinity will be represented by a perfectly flat metric.

We shall now see how this problem is naturally avoided by the cosmological models
introduced in the preceding section, for some values of the fundamental parameter ̟ but

not for others.
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4. Ensuring Flatness at Infinity

In order to discuss anisotropies, we need to recall some aspects of the metrics of “asymp-
totically AdS” Euclidean spaces. The formal definition of such metrics is discussed at

length in [33], and we need not rehearse all the details here: the main point is simply as
follows. Under conditions which will always be satisfied for the spaces discussed here, the

metric of an asymptotically AdS Euclidean space M [with asymptotic sectional curvature
−1/L2] can be written, near to any connected component of the conformal boundary, as

g+(M) =
L2

ρ2
[dρ2 + g+

ρ ], (19)

where ρ is a coordinate such that the given component of the conformal boundary is at

ρ = 0. Here g+
ρ is a metric on the spaces transverse to the boundary. The point we wish

to stress is that g+
ρ does in general have a non-trivial dependence on ρ; the conformal

structure at this component of infinity is represented by a metric which is obtained by
taking the limit of g+

ρ as ρ tends to zero. In this sense, the metrics of the form (1)

considered above were very special cases, since we did not need to take this limit. A
good example of this limiting process is provided by Lorentzian AdS4 itself: in global

coordinates (t,r,θ, φ) the metric can be expressed as

g−(AdS4) = cosh2(r/L) [− dt2 + sech2(r/L) dr2 + L2 tanh2(r/L) [dθ2 + sin2(θ)dφ2]],(20)

and we see that the metric still depends on r even after the divergent conformal factor

cosh2(r/L) is removed. [Here of course the boundary is obtained by letting r tend to
infinity, so that tanh2(r/L) tends to unity and we obtain the usual cylindrical conformal

boundary of AdS4.]
This kind of behaviour is actually quite well-adapted to the cosmological case, since

it is well known [see for example [72]] that the approach to cosmological singularities is
ultralocal : that is, ultimately, only the [proper] time dependence of the metric is impor-

tant. Hence, in studying the very late or very early stages of a Bang/Crunch cosmology,
we can indeed concentrate on metrics which resemble (19), in the sense that the metric

at infinity is obtained by stripping away a conformal factor and then taking the limit of
a family of metrics parametrized by a single parameter. In the notation of [72], we can

express the metric in the ultralocal phase as

g−Anisotropic = − (dt−)2 + (a−)2
∑

i

e2βi (σi)2, (21)

where a−(t−) is an overall scale factor, where the σi are orthogonal, time-independent
one-forms on the spatial slices, where the βi are three distinct functions of proper time

satisfying
β1 + β2 + β3 = 0, (22)

and where all dependence on spatial position has been suppressed. For locally flat spatial
sections one finds that

dβi

dt−
= ci (a

−)−3, (23)
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and one can show [72] that the scale factor satisfies a FRW equation of the form

3 H2 = 8π [ρ +
σ2

(a−)6
], (24)

where H is the Hubble parameter, where ρ is the total energy density and where

σ2 =
1

2
[c21 + c22 + c23]; (25)

thus σ is a constant which is an overall measure of the extent of anisotropy in such a

spacetime.
In our case, ρ is the sum of the energy density of the background AdS4, namely

− 3/8π L2, with the energy density of the quintessence field. Now with regard to this latter,

recall that we saw that the Breitenlohner-Freedman bound requires that the series in
equation (2) should terminate, with the last value of k being the largest integer satisfying

2

1 +
√

2
× 1

3
≤ ̟/k2 . (26)

For example, in the case of ̟ = 10 [see [35]], the last value of k is 6, and this means

that the corresponding quintessence component has a density proportional to (a−)− 7.2.

[Recall that the magnitude of the exponent must not exceed 7.2426.] In general, if the last
value of k satisfies (26), then it may also satisfy ̟/k2 < 1/3. If this is so, then we see

from equation (10) that the quintessence energy density grows, as a− tends to zero, more
rapidly than (a−)− 6. For example, in the case where ̟ = 10, this means that, extremely

near to the Bang or the Crunch — not at other times — equation (24) becomes

3 H2 = 8π [
− 3

8πL2 +
3

8πL2 (a−)7.2
+

σ2

(a−)6
], (27)

Clearly, the second term on the right is the dominant one near to the Bang and the

Crunch — and this would remain true even if we included the contributions of ordinary
matter, radiation, and so on. In particular, whatever the initial anisotropy σ may have

been, it will be completely insignificant compared to this term: one has a kind of “cosmic
no-hair” theorem.

The situation here is exactly analogous to the way, as one moves away from the initial
singularity, the inflaton potential dominates all other terms in the Friedmann equation,

so that anisotropies are “inflated away” by the inflationary expansion: here the “last”
quintessence component has the same effect as the singularities are approached, because

its density grows more rapidly than that of any other contribution. Since there is no

limit to the contraction, there is no limit to this effect — all local anisotropies will be
completely wiped out in the very last stages of the approach to the singularities. A very

similar phenomenon plays a crucial role in the cyclic cosmologies [77], and we see that it is
equally important here, although we stress that there is no “bounce” in our case: we need

rapid density growth rates not to prepare for a phase of expansion succeeding a crunch,
but to ensure that the metric induced on [Euclidean] infinity is indeed flat. [Because

of this difference, it turns out that much larger values of the effective equation-of-state
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parameter are required in the cyclic case than here; as we know, in our case the magnitude
of the largest exponent of the scale factor is never much larger than six.]

The essential point here is that a three-dimensional Riemannian manifold which is
locally isotropic around each point — that is, there is a local isometry mapping any unit

vector at any point to any other unit vector at that point — has a sectional curvature
which is independent of direction. For in three dimensions each unit vector at a point

uniquely determines a two-dimensional subspace of the tangent space, namely, the sub-
space perpendicular to it. But if the sectional curvature of a Riemannian manifold of

dimension at least three is independent of direction, then [[78], page 202] it is also in-
dependent of position; that is, the curvature is constant. Since compact manifolds of

constant negative curvature are in Kazdan-Warner class [N], while those of constant pos-
itive curvature are in [P], it follows that the only way that a metric on a manifold with

the topologies we are considering here can be locally isotropic is by being perfectly flat.
We conclude that the conformal structure induced at Euclidean infinity is represented by

a perfectly flat metric, provided that the matter content of our spacetime is such that all
local anisotropies are eliminated by a “final” quintessence component with ̟/k2 < 1/3.

We require, then, that the final value of k should satisfy

2

1 +
√

2
× 1

3
≤ ̟/k2 < 1/3. (28)

These inequalities express the competing demands of the Breitenlohner-Freedman bound

[which requires the lower bound] and of Seiberg-Witten instability [which, via the Schoen-
Yau-Gromov-Lawson theorems, requires the upper bound]. It is striking that the allowed

interval is so short.

The effect of (28) is to exclude certain values of ̟; the only allowed values are those
lying in intervals [a , b) where (28) is satisfied for some integer k. These intervals are

given in the table. The intervals are closed to the left, open to the right [so that, for
example, ̟ = 3 is not permitted].

k a b
1 0.276142 0.333333
2 1.104570 1.333333
3 2.485281 3.000000
4 4.418278 5.333333
5 6.903559 8.333333
6 9.941126 12.000000
7 13.530976 16.333333
8 17.673112 21.333333
9 22.367532 27.000000
10 27.614238 33.333333
11 33.413227 40.333333
12 39.764502 48.000000

Notice that there is an upper bound on the values of ̟ so excluded, because the allowed
interval for k = 11 overlaps the allowed interval for k = 12, and all subsequent allowed

intervals overlap their successors. [One sees this either by consulting the table or by means
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of a simple calculation based on requiring the lower end of one interval to be smaller than
the upper end of its predecessor.] This upper bound is given by

̟forbidden <
242

3
(
√

2 − 1) ≈ 33.4132. (29)

That is, all values of ̟ above this number are allowed. Below it, there is a haphazard
set of intervals which are allowed, alternating with intervals which are not. For example,

̟ = 10, an example studied in detail in [35], is allowed; on the other hand, ̟ = 9.90 is

not; nor is ̟ = 2, also studied in [35]. In short, values of ̟ below 33.4132 entail careful
fine-tuning; larger values do not. If we can argue on independent grounds that ̟ is large,

then there are no difficulties with fine tuning.
We conclude that if we take ̟ to be large, then “cosmic baldness” will automatically

ensure that the conformal structure induced at Euclidean infinity is represented by an
exactly flat metric, and this can be achieved without violating the Breitenlohner-Freedman

bound. In fact, the observations [35] require̟ to be at least this large. Furthermore, there
are general theoretical reasons for expecting ̟ to be larger still. In many string theory

compactifications [79][80] there is a general tendency to predict that the fundamental
length scale of our observed spacetime should be very short. But one sees from equations

(7) and (8) that the natural length scales of the Euclidean and Lorentzian versions of our
spacetime are different: in the former case, the space is asymptotic to a Euclidean AdS4

with “radius” L, whereas in the latter case the Universe is finite in all directions, including
time, with a total lifetime of π̟L. Thus L can indeed be small without contradicting the

observations, provided that ̟ is very large.

To summarize: Seiberg-Witten instability allows us, in the context of cosmic holog-
raphy, to draw several surprisingly strong conclusions regarding the spatial sections of

the Universe. The first is that negatively curved compact spatial sections are completely
ruled out in string theory. In this case, the instability is particularly persistent, because

it is topological : the spatial sections can be arbitrarily deformed as we trace them back to
the Bang or forward to the Crunch, yet the system is still subject to instabilities arising

from the nucleation of branes which lower their action as they are moved towards the
[Euclidean] boundary.

Combining this with Linde’s [1] analysis discussed earlier, we find that the flat compact

three-manifolds are unique in their ability to satisfy all of the strictures imposed by the

requirements of Inflation [which accommodates positively curved sections only with great
difficulty] and large brane instability [which even more firmly rules out negatively curved

sections]. Even the flat manifolds only narrowly escape Seiberg-Witten instability. They
escape it if we can make the boundary exactly conformally flat; we saw that our “toy

model” of an accelerating holographic cosmos was able to perform this feat, provided

that the parameter ̟ is sufficiently large, as is naturally the case.
The conclusions we have reached here, while developed in the context of a particular

model, are in fact extremely robust. That is, they do not depend on the particular
choice we made — a Euclidean axion — for the matter content of our cosmology: for

example, the prohibition on negatively curved spatial sections is extremely general, since
it depends only on the topology of these spaces and not on their geometry. Our ability to

avoid Seiberg-Witten instability in the case of a boundary in KW class [Z] did depend on
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the ability of our matter model to flatten the sections as the singularities are approached,
but this is attainable for many matter models — see [77].

However, we shall now see that the list of candidates for the spatial geometry of the
world can be still further reduced if we do adopt the specific matter model introduced

earlier. Thus the findings of the next section should not be considered to be as general as
those of this section.

5. Finite — and [Conformally] Flat — In All Directions

With the help of Seiberg-Witten instability [43], cosmic holography [2], and Inflationary
arguments [1], we have reduced the number of candidates for the spatial sections of the

Universe to a mere ten. That is nevertheless nine too many.

If we knew precisely which of these ten has been chosen by Nature, then we would have
a valuable clue as to the true nature of the initial state. The ten candidates, dubbed the

platycosms by Rossetti and Conway [46] [a term we adopt here as a useful abbreviation],
are of varying degrees of complexity. Among those which are orientable, we have the torus

T3, the dicosm T3/ZZ2, the tricosm T3/ZZ3, the tetracosm T3/ZZ4, the hexacosm T3/ZZ6,
and the didicosm or Hantzsche-Wendt space T3/[ZZ2 × ZZ2].

For all that we know, the spatial sections of our Universe could have the structure
of the didicosm. Unlike the torus, this space has non-trivial holonomies, of two different

kinds: the holonomy group is ZZ2 × ZZ2, a finite subgroup of SO(3). The fundamental
domain here is a rhombic dodecahedron, and, if this domain were small enough to be

observable, the resulting patterns in the microwave sky would be remarkable indeed [45].
Even if it is not directly observable, a theoretical deduction that the spatial sections have

such a complicated structure would surely be a strong hint that the initial state has been
selected with great precision, presumably by something very much more intricate than a

simple classical singularity. But how can such a theoretical deduction be made? In this

section, we shall show how our toy model, with Euclidean metric (7) [where the transverse
sections are not necessarily globally T3] leads to a partial answer to this question. The

hope of course is that a more realistic matter model would yield a more complete answer.
Equation (7) indicates that if we interpret the underlying manifold as the interior

of a manifold-with-boundary, then that boundary is disconnected: it has two connected
components. It was emphasised by Maldacena and Maoz [2] themselves that the status of

Euclidean manifolds with a disconnected boundary is very problematic from a holographic
point of view. In general this apparent failure of a one-to-one correspondence is a very

deep question [see [81][82][83] for discussions], but in [35] we suggested that it may have
a very simple resolution in the particular case with which we are concerned here. The

argument is as follows.
The two-dimensional open cylinder (0, 1) × S1 can be compactified in [at least] two

different ways. The first is to regard it as the interior of the compact manifold-with-
boundary [0, 1] × S1 [the closed cylinder]; the second is to regard it as an open submanifold

of the torus S1 × S1 = T2 [obtained from T2 by deleting a circle]. Neither option is

“correct”: one makes a choice depending on the circumstances. The difference, of course,
is that in the first case we have to add two circles, whereas in the second case we only

need to add one. This led us, in [35], to suggest that the second kind of interpretation is
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required by cosmic holography.
In the case at hand, we can re-express the metric (7) in the following way. Define a

constant c̟ by

c̟ =
̟

π

∫

∞

0
sech̟(ζ)dζ , (30)

and a new coordinate θ by

c̟Ldθ = ±sech̟(
t+

̟L
)dt+, (31)

where the sign is + when t+ is positive, − when t+ is negative. The range of θ is −π
to +π. Now solve for t+ in terms of θ and use this to express sech̟( t+

̟L) in terms of
θ. Denote this function by G̟(θ); then G̟(θ) vanishes at ±π, and g+(̟,A) is given in

terms of the coordinate θ as

g+(̟,A) = c2
̟L2 G−2

̟ (θ) [ dθ2 + (
A

c̟ L
)2 (dθ2

1 + dθ2
2 + dθ2

3)]. (32)

As it stands, the coordinate θ cannot be extended to the whole circle: we have to delete
the [single] point θ = ±π, because g+(̟,A) is singular there. However, removing the

prefactor on the right side of (32) by a conformal transformation, we obtain precisely the
standard local metric for a non-cubic four-dimensional torus. [The number A/c̟L can in

fact be constrained by observational data: see [35].]
If we had begun with (32) instead of (7), we would undoubtedly have declared that

the natural compactification of our Euclidean space is a space with the local geometry of
a torus. Infinity here is not a boundary; it is instead a “submanifold at infinity”. The real

point, however, is that infinity is connected in this interpretation. Clearly the “double

boundary” problem simply does not arise if we adopt this viewpoint.
Thus, we propose an extremely simple extension of our hypothesis of flat, compact

spatial sections: not only the spatial sections, but also [the compactified Euclidean ver-
sion of] the entire four-dimensional spacetime should have the topology of a compact flat

manifold. In short, the spatial sections are flat, compact three-manifolds, while the com-
pactified spacetime is globally conformal [equation (32)] to a flat, compact four-manifold.

Now recall that the adoption of the local three-dimensional metricA2 [dθ2
1 + dθ2

2 + dθ2
3]

in equation (6) did not commit us to the global geometry and topology of the three-

dimensional torus: many distinct compact flat three-dimensional manifold have this local
metric, since all such manifolds can be expressed topologically as T3/F, for some finite

group F. [Recall that we assumed for simplicity that the covering torus was cubic, but
trivial modifications allow us to consider the most general case.] In the same way, the

appearance of the metric of a four-dimensional torus in (32) does not mean that we have
here a manifold with the topology of T4 or even that of S1 × T3/F. In constructing a

general compact flat manifold, the procedure is as in the familiar case of a torus, but one

is free to apply various isometries before performing the identifications that produce a
compact space. In three dimensions, there are ten ways of doing this; in four dimensions

[44], there are no fewer than 75, though we hasten to add that most of these 75 cannot
be constructed from manifolds of the form T3/F in the above way.

Return temporarily to the interpretation of g+(̟,A) as a metric on the interior of
a manifold-with-boundary. That boundary consists of two copies of T3/F. What we are
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proposing here is that these two copies should be identified. But, before performing
the identification, we are free to apply an isometry, as above, to one of the copies. If

we do this, we shall obtain a space with the same local metric as S1 × T3/F [which
is what we get if the isometry is trivial]; that is, we obtain a metric of the form (32).

The spaces we obtain will not be fully general flat compact four-dimensional manifolds,
partly because the metric in (32) has a special form [the torus is rectangular and has

three dimensions of the same length, while the fourth in general has a different length]
and partly because we have already fixed part of the topology by specifying the group F.

Nevertheless some freedom remains, because T3/F still has a non-trivial isometry group
even after the factoring by F. Can we reduce this freedom in a physical way? The answer

is that we can, by exploiting the fact that our matter field is of a very specific kind: it is
a [Euclidean] axion.

The axion field ϕ+ is able to distinguish t+ = − ∞ from t+ = + ∞, because from
equation (11) we have

lim
t+→∞

ϕ+ =

√

̟

4π
× π

2
= − lim

t+→− ∞

ϕ+, (33)

and this sign difference is physical because from equation (3) we have

W+(−
√

̟

4π
× π

2
) = − W+(+

√

̟

4π
× π

2
). (34)

This is important, because it apparently puts a stop to our plan of identifying the two
boundary components: how can we do so when the field and its superpotential take

different values on each component? But recall that an axion naturally reverses sign
under a reversal of orientation. Thus the problem is solved in a natural, geometric way if

— and only if — we arrange for the orientation of one boundary component to be reversed

before identifying it with the other. This is precisely the way, in two dimensions, a Klein
bottle [44] is defined, and we can proceed in much the same way here, allowing however

for the greater complexity of T3/F. Let us see to what extent this requirement reduces
our freedom in constructing our four-dimensional Euclidean “spacetime”.

The point is simply that not every compact flat three-manifold admits an orientation-
reversing isometry. In essence, factoring a Riemannian manifold by a discrete group

usually reduces the “size” of the isometry group, since not all isometries of the original
space are compatible with the factoring. In the present case, the reduction can obstruct

the procedure we outlined above. The isometry groups of all of the platycosms are listed
in [46], and the result we need can simply be stated using that list; however, we can gain

more insight by means of the following elementary argument.
Suppose that one has a manifold M admitting a group G(M) of diffeomorphisms (such

as isometries, conformal symmetries, and so on). Let Γ be a subgroup of G(M) and let
N(Γ) be the normalizer of Γ in G(M). That is,

N(Γ) = {g ∈ G(M) | gγg−1 ∈ Γ ∀ γ ∈ Γ}. (35)

Clearly N(Γ) contains all those elements of G(M) which descend to well-defined diffeo-
morphisms of M/Γ. But notice that every element of Γ itself has no effect on each element
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of M/Γ. Thus the symmetry group of M/Γ, which we denote by G(M/Γ), is not N(Γ) but
rather the quotient N(Γ)/Γ:

G(M/Γ) = N(Γ)/Γ. (36)

See [16] for more details and for other applications of this formula.

Let us see how this works in some concrete examples. First, the torus T3 is defined as
follows [[44], page 117]. First recall that any isometry of IR3 can be expressed as (B, a),

where B is an orthogonal matrix and a is a vector, and where (B, a) means that we let B
act first, followed by a translation through a. Let ai, i = 1,2,3 be a fixed basis for IR3. If

Γ∗

3 is generated over the integers by the isometries τi = (I3, ai), where I3 is the identity
matrix, then T3 = IR3/Γ∗

3. Now consider the isometry Ω = (− I3, 0). It is easy to see that

conjugation by Ω just maps each element of Γ∗

3 to its inverse. Thus Ω does normalize Γ∗

3

and so it projects to an isometry of T3. Of course, Ω reverses the orientation of IR3, so

we see that T3 does admit an orientation-reversing isometry, which is what we need.
Next, the platycosm of the form T3/ZZ3 [the tricosm] is obtained as follows. First we

constrain the vectors ai: we require a1 to be orthogonal to the other two, and we require
a2 and a3 to be of the same length and to be inclined at an angle of 2π/3. Next, we set

α[tri] = (A3[2π/3], a1/3), where A3[2π/3] is a 3 × 3 matrix corresponding to a rotation

through 2π/3 in the a2, a3 plane: that is, A3[2π/3] maps a1 to itself, a2 to a3, and a3 to
−a2 − a3. Then the tricosm is IR3/Γ[tri], where Γ[tri] is obtained by adjoining α[tri] to

the generators of Γ∗

3. Now conjugation by Ω still maps each element of Γ∗

3 to its inverse,
but it does not have this effect on α[tri]; instead we have

Ωα[tri] Ω−1 = (A3[2π/3],− a1/3). (37)

The isometry on the right is not the inverse of α[tri] and is not an element of Γ[tri]. Thus

Ω does not descend to an isometry of the tricosm. In fact, in order to do this, an isometry

of IR3 would have to reverse orientation in the plane defined by a2 and a3, while also
reversing a1; but such an isometry could not be orientation-reversing.

A similar argument works also for the tetracosm T3/ZZ4 and the hexacosm T3/ZZ6. It
does not work for the dicosm T3/ZZ2. To see why, note that this space is defined much

as the tricosm, except that apart from being orthogonal to a1, the other conditions on a2

and a3 are dropped, and α[tri] is replaced by α[di] = (A3[π], a1/2), where A3[π] is a 3 ×
3 matrix rotating the a2, a3 plane through π; then the dicosm is IR3/Γ[di], where Γ[di] is
obtained by adding α[di] to the generators of Γ∗

3. Again, conjugation by Ω maps Γ∗

3 to

itself, but now we have
Ωα[di] Ω−1 = (A3[π],− a1/2), (38)

and this is in Γ[di] since it is the inverse of α[di] [because A3[π] is of order two]. Thus Ω
does descend to an orientation-reversing isometry of the dicosm. The didicosm T3/[ZZ2 ×
ZZ2] can be constructed in much the same way as the dicosm, but with three additional
generators instead of one, each involving a rotation by π in some plane. One can show

that Ω descends to an orientation-reversing isometry in this case also. In the case of the
non-orientable platycosms, a different argument applies, but for those platycosms it is in

any case obvious that there can be no orientation-reversing isometries. Thus the torus,

the dicosm, and the didicosm are the only survivors, that is, they are the only platycosms
which can be used to construct a “generalized Klein bottle” of the kind we need in order
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to compensate for the fact that the axion field has opposite signs on the two connected
components of infinity in our model.

Let us now show how to construct the final compact flat four-manifolds which, as
explained above, are the possible underlying spaces of the conformal compactification

corresponding to the metric (32). We shall concentrate on the dicosm: the construction
for the torus is just a simpler version, while that for the didicosm is somewhat more

complicated but introduces no essentially new difficulties.
Let aµ, where µ = 0 through 3, be an orthogonal basis for IR4, where we take a0 to be

of length 2πc̟L, while a1, a2, and a3 are of length 2πA. Define 4 × 4 matrices A4 and B4

by A4 = diag(1, 1, −1, −1) and B4 = diag(1, −1, −1, −1), and then define a pair of IR4

isometries as follows.
α = (A4, a1/2), β = (B4, a0/2). (39)

Let ∆4(Γ[di]) be the group generated by these isometries, together with the translations
τµ = (I4, aµ). Then ∆4(Γ[di]) can be presented as follows:

α2 = τ1, β2 = τ0, βαβ−1 = α−1,
ατ0α

−1 = τ0, ατ2α
−1 = τ−1

2 , ατ3α
−1 = τ−1

3 ,
βτ1β

−1 = τ−1
1 , βτ2β

−1 = τ−1
2 , βτ3β

−1 = τ−1
3 .

∆4(Γ[di]) is so named because it contains a subgroup Γ[di], generated by α, τ1, τ2, and τ3,

which corresponds to the fundamental group of the dicosm. One can see that ∆4(Γ[di]) is
a non-abelian infinite group with no element of finite order [other than the identity] and

with a maximal free abelian subgroup Γ∗

4 [generated by the τµ] consisting of four copies
of ZZ. From the relations given, it is clear that Γ∗

4 is normal in ∆4(Γ[di]); the quotient

∆4(Γ[di])/Γ∗

4 is of finite order [it is isomorphic to ZZ2 × ZZ2]; one says that Γ∗

4 is of index 4
in ∆4(Γ[di]) and of rank 4. By the relevant version of the Bieberbach theorems [[44], page

105] it follows that IR4/∆4(Γ[di]) is a four-dimensional manifold, covered by a four-torus
IR4/Γ∗

4 with the flat metric

g+
flat(c̟L, A) = c2

̟L2 dθ2 + A2 (dθ2
1 + dθ2

2 + dθ2
3); (40)

here θ is an angular coordinate corresponding to a0, while the θi correspond to the ai.
As a Riemannian manifold, IR4/∆4(Γ[di]) can be expressed as T4/[ZZ2 × ZZ2], where

T4 is the rectangular torus with aspect ratio given by A/(c̟L), and where ZZ2 × ZZ2 is the
linear holonomy group of this space. One of the two independent non-trivial holonomies

reverses orientation, while the other does not. All this can be repeated beginning with
the three-torus instead of the dicosm, resulting in a flat four-manifold with the structure

T4/ZZ2, or with the didicosm [Hantzsche-Wendt space], resulting in a flat four-manifold
with the structure T4/[ZZ2 × ZZ2 × ZZ2].

The overall picture, then, is this. The underlying structure of the compactified Eu-
clidean four-dimensional space is that of T4/ZZ2, T4/[ZZ2 × ZZ2], or T4/[ZZ2 × ZZ2 × ZZ2].

Let us take this last space as a concrete example. The local metric is given in (40); it
is indistinguishable from that of a four-torus, except that the coordinates are not global.

However, if we move around the “time” direction [the θ direction], we find that orientation
is reversed once per cycle. If we arbitrarily select θ = ±π to be the the [single] point on the

θ-circle where orientation is reversed, then a pseudoscalar such as our Euclidean axion will
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automatically reverse sign there. Now suppose that we single out θ = ±π by performing
the conformal transformation that maps the metric in (40) to the one given in equation

(32). Now θ = ±π has to be excised, and the space has the topology of a Bang/Crunch
spacetime with spatial sections having the structure of a didicosm. Transforming to the

Lorentzian version, we have the Bang/Crunch cosmology with metric (8). In the reverse
direction, we transform the metric in (8) to its Euclidean version, which is apparently a

space with a conformal infinity consisting of two components, each having the structure
of the didicosm; however, we can naturally identify these after performing an orientation-

reversing twist, so as to obtain the compact four-manifold T4/[ZZ2 × ZZ2 × ZZ2] as the
compactification. The dual field theory resides on the single, orientable, didicosm section

at θ = ±π, that is, at infinity.
Linde’s considerations of quantum gravity [1], with which we began, allowed the spatial

sections of our universe to have any one of the infinite variety of structures possible
for compact three-manifolds of negative or zero curvature. We have narrowed this vast

array down to just three candidates: the torus T3, the dicosm T3/ZZ2, and the didicosm
T3/[ZZ2 × ZZ2]. We do not know how to reduce this list to a single candidate. It is

noteworthy, however, that although they seem rather similar, the homology groups of the

three surviving candidates are very different: in particular, their first homology groups
[with integer coefficients] are given on page 122 of [44] as

H1[T
3] = ZZ × ZZ × ZZ

H1[T
3/ZZ2] = ZZ × ZZ2 × ZZ2

H1[T
3/[ZZ2 × ZZ2]] = ZZ4 × ZZ4. (41)

Notice that this last group is finite; thus the cycles around which branes may be wrapped

have a very different structure in the didicosm from those in the torus or the dicosm. It
also follows that the first [and therefore second] Betti numbers are quite different:

b1[T
3] = 3, b1[T

3/ZZ2] = 1, b1[T
3/[ZZ2 × ZZ2]] = 0. (42)

The vanishing of b1[T
3/[ZZ2 × ZZ2]] means that, in sharp contrast to the torus and the

dicosm, the didicosm has no harmonic one-forms or two-forms. A further study of all of

these properties may lead to a physical way of distinguishing the didicosm from all other
candidates.

6. Conclusion

What is the shape of space? This question, even in its modern form, has exercised leading

minds for over a century [[84]; see [15] for a discussion of the views of de Sitter and
Schwarzschild]. For a time there was hope that it would be settled by direct observation,

but, as this hope has begun to fade, we may have to turn to theory for guidance. There
is a very large literature on observational aspects of topologically non-trivial cosmological

models, but very little is known about the basic physical principles which might prefer one
topology over another. Indeed, one of the main motivations of this work is to persuade

the reader that it is possible to find such principles.
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It is striking and exciting that Inflation, which tells us that we should probably not
hope to see direct evidence of non-trivial spatial topology, nevertheless also tells us [1] that

this topology probably is non-trivial. It then becomes a pressing question to determine
which topological structure has been chosen — and how.

In this work, we have argued that our best theories of fundamental physics do allow
us to narrow the field of candidates. The lessons we have learned vary in their degree of

generality.
The most general lessons are based on the assumption that some kind of bulk-boundary

duality is valid in cosmology. This very general assumption already has strong conse-
quences. Most importantly, it tells us that we cannot ignore the most distant regions of

our world, those beyond cosmological horizons: for those regions are just as surely part
of the bulk as the regions near to us in space and time, and their role in the boundary

dual theory cannot be excluded or neglected.
Slightly less generally, if we assume that the spacetime conformal boundary lies to the

future and the past [as in de Sitter spacetime, or in any of the cosmologies of the general
form considered by Maldacena and Maoz [2]], then typically each connected component

of the “dual” space has the same topology as the spatial sections. But if we further

assume that string theory controls the bulk-boundary relationship, then the very general
arguments of Seiberg and Witten [43] apply. We are still at a very high level of generality

at this point, but already we can, with the help of the theorem of Kazdan-Warner, make
an extremely strong deduction about the nature of the spatial sections: they cannot be

negatively curved. The startling feature of this argument is precisely the fact that it is
topological : once it has been established that a manifold is in KW class [N], its scalar

curvature must remain negative [ensuring Seiberg-Witten instability] no matter how it
may be deformed by the subsequent evolution of spacetime.

If Seiberg-Witten instability rules out negative curvature, and some of the most inter-
esting versions of Inflation disfavour positive curvature [1], then of course we are directed

towards the flat, compact three-manifolds: the platycosms [45][46]. Already this is a great
reduction, since there are infinitely many compact negatively curved spaces, but only ten

platycosms.
All of these conclusions are very general, since they do not depend on using a spe-

cific cosmological model. If we are willing to be more specific, then we can reduce the

list still further. The particular cosmological model considered here, combined with the
[holographically motivated] requirement that disconnected boundaries must be avoided,

leads to a demand that the spatial sections should have a specific geometric property; and
we found that only three candidates satisfy this condition. We do not ask the reader to

take this particular conclusion very seriously, since it is based on specific properties of a
specific matter model. The more important conclusion is that we have shown explicitly

that it is indeed possible to use physical principles to effect a vast reduction in the range

of candidates. It does not seem too far-fetched to imagine that a more sophisticated and

realistic matter model might well succeed in reducing the list to a single candidate. It
may be that this is how the shape of space will be discovered: perhaps only one topology

is consistent with our best theories.
Recent work on the [surprisingly deep] geometry of the platycosms sheds interesting

light on this observational/theoretical interplay for cosmic topology. It has been found
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[85] that it is possible for two platycosms with different topologies to be isospectral, that
is, the spectra of their Laplace operators can be placed into a one-to-one correspondence.

This is remarkable, because two three-dimensional tori can be isospectral only if they have
the same shape and size. Since the analysis of CMB data involves precisely these spectra,

it could be very difficult to distinguish these two spaces by means of CMB observations,
even if the fundamental domain were small enough for direct observations to be possible.

Yet they are certainly distinguished by our theoretical analysis above. For the isospectral
pairs are obtained by taking a certain specific torus T3

0 of a fixed shape [it is a “two-storey”

rectangular torus], and then taking quotients. The quotient of the form T3
0/[ZZ2 × ZZ2] is

a particular example of a didicosm, named “Didi” in [85]; the quotient of the form T3
0/ZZ4

is an example of a tetracosm, named “Tetra”7. Didi and Tetra are isospectral, but we
saw above that Didi is acceptable in our specific cosmology while Tetra must be excluded.

Thus we have a situation where theoretical arguments are able to distinguish candidates
which may be difficult to separate observationally.

Of course the main task now is to determine or at least constrain the boundary field
theory. Because of the special asymptotic properties of the Maldacena-Maoz cosmologies

in the accelerating case [33], there is reason to believe that the bulk/boundary correspon-

dence will be unusual here. This is currently under investigation.
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